Influence of phase correction of late gadolinium enhancement images on scar signal quantification in patients with ischemic and non-ischemic cardiomyopathy

نویسندگان

  • John Stirrat
  • Sebastien Xavier Joncas
  • Michael Salerno
  • Maria Drangova
  • James White
چکیده

BACKGROUND Myocardial fibrosis imaging using late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) has been validated as a quantitative predictive marker for response to medical, surgical, and device therapy. To date, all such studies have examined conventional, non-phase corrected magnitude images.  However, contemporary practice has rapdily adopted phase-corrected image reconstruction. We sought to investigate the existence of any systematic bias between threshold-based scar quantification performed on conventional magnitude inversion recovery (MIR) and matched phase sensitive inversion recovery (PSIR) images. METHODS In 80 patients with confirmed ischemic (N = 40), or non-ischemic (n = 40) myocardial fibrosis, and also in a healthy control cohort (N = 40) without fibrosis, myocardial late enhancement was quantified using a Signal Threshold Versus Reference Myocardium technique (STRM) at ≥2, ≥3, and ≥5 SD threshold, and also using the Full Width at Half Maximal (FWHM) technique. This was performed on both MIR and PSIR images and values compared using linear regression and Bland-Altman analyses. RESULTS Linear regression analysis demonstrated excellent correlation for scar volumes between MIR and PSIR images at all three STRM signal thresholds for the ischemic (N = 40, r = 0.96, 0.95, 0.88 at 2, 3, and 5 SD, p < 0.0001 for all regressions), and non ischemic (N = 40, r = 0.86, 0.89, 0.90 at 2, 3, and 5 SD, p < 0.0001 for all regressions) cohorts. FWHM analysis demonstrated good correlation in the ischemic population (N = 40, r = 0.83, p < 0.0001). Bland-Altman analysis demonstrated a systematic bias with MIR images showing higher values than PSIR for ischemic (3.3 %, 3.9 % and 4.9 % at 2, 3, and 5 SD, respectively), and non-ischemic (9.7 %, 7.4 % and 4.1 % at ≥2, ≥3, and ≥5 SD thresholds, respectively) cohorts. Background myocardial signal measured in the control population demonstrated a similar bias of 4.4 %, 2.6 % and 0.7 % of the LV volume at 2, 3 and 5 SD thresholds, respectively. The bias observed using FWHM analysis was -6.9 %. CONCLUSIONS Scar quantification using phase corrected (PSIR) images achieves values highly correlated to those obtained on non-corrected (MIR) images. However, a systematic bias exists that appears exaggerated in non-ischemic cohorts. Such bias should be considered when comparing or translating knowledge between MIR- and PSIR-based imaging.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of scar signal quantification using phase corrected and conventional magnitude inversion recovery delayed enhancement imaging in patients with ischemic and non-ischemic cardiomyopathy

Background Myocardial scar volume quantification has been shown to predict response to medical, surgical, and device therapy. Phase sensitive inversion recovery (PSIR)-based Late Gadolinium Enhancement (LGE) image reconstruction is clinically attractive for its reduced dependence on accurate prescription of the Time from Inversion (TI time), and is becoming a preferred approach for many centers...

متن کامل

Prediction of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging.

BACKGROUND Scar signal quantification using late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) identifies patients at higher risk of future events, both in ischemic cardiomyopathy (ICM) and nonischemic dilated cardiomyopathy (DCM). However, the ability of scar signal burden to predict events in such patient groups at the time of referral for implantable cardioverter-defibrillator ...

متن کامل

Comparison of Semi-automated Late Gadolinium Enhancement Quantification Techniques in Measuring Septal Fibrosis in Patients with Dilated Non-Ischemic Cardiomyopathy

Background Mid-wall striae pattern late gadolinium enhancement (LGE) has been shown to independently predict future outcomes in patients with dilated non-ischemic cardiomyopathy (NICM). Standardized quantification tools are of particular interest for clinical translation of this novel imaging marker. However, signal intensity (SI) based threshold techniques, such as Signal Threshold versus Refe...

متن کامل

Myocardial fibrosis delineation in late gadolinium enhancement images of Hypertrophic Cardiomyopathy patients using deep learning methods

Introduction: Accurate delineation of myocardial fibrosis in Late Gadolinium Enhancement on Cardiac Magnetic Resonance (LGE-CMR) has a crucial role in the assessment and risk stratification of HCM patients. As this is time-consuming and requires expertise, automation can be essential in accelerating this process. This study aims to use Unet-based deep learning methods to automate the mentioned ...

متن کامل

Microvascular ischemia in hypertrophic cardiomyopathy: new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement

BACKGROUND Microvascular ischemia is one of the hallmarks of hypertrophic cardiomyopathy (HCM) and has been associated with poor outcome. However, myocardial fibrosis, seen on cardiovascular magnetic resonance (CMR) as late gadolinium enhancement (LGE), can be responsible for rest perfusion defects in up to 30% of patients with HCM, potentially leading to an overestimation of the ischemic burde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2015